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Aircraft loss of control (LOC) can result from a large spectrum of causal and contribut-
ing factors and is manifested as flight outside of the normal operating envelope and not
predictably altered by pilot (or flight system) control inputs. LOC can also be characterized
by nonlinear aircraft effects that degrade handling (or flying) qualities, including kinematic
and/or inertial coupling, disproportionately large responses to small state variable changes,
and oscillatory and/or divergent behavior. Some specific examples of nonlinear upset phe-
nomena include stall / spin, falling leaf, and roll-pitch coupling oscillations. Although LOC
need not be unrecoverable, it will become so if proper action is not taken. Recovery de-
pends upon the timely execution of two critical actions: 1.) Determination of a desired
feasible trim condition that the aircraft is able to recover to and reside on; and 2.) De-
termination of a control strategy that is capable of bringing the aircraft back to fly at the
desired trim condition. This paper will investigate aircraft recovery from highly nonlinear
upset conditions to a desired stable trim point that can be safely maintained. The test bed
is a 6 d.o.f 12-state flight dynamics simulation model of an FA-18 like aircraft, which is
nonlinear, flight-condition dependent. The proposed LOC prevention and recovery control
strategies may also be applied to transport aircraft configurations for which nonlinear upset
data is available.

Nomenclature

LOC Loss of Control (in-flight)
NASA National Aeronautics and Space Administration
NTSB National Transportation Safety Board

x
[
V β α p q r φ θ ψ pN pE h

]T
state vector of the 12-state F/A-18 full nonlinear flight dynamics model

u
[
δa δr δe δT

]T
control input vector of the 12-state F/A-18 full nonlinear flight dynamics model

V total speed (ft/s)
β side slip (rad for computation, deg for display)
α angle of attack (rad for computation, deg for display)
p roll rate (rad/s for computation, deg/s for display)
q pitch rate (rad/s for computation, deg/s for display)
r yaw rate (rad/s for computation, deg/s for display)
φ roll angle (rad for computation, deg for display)
θ pitch angle (rad for computation, deg for display)
ψ yaw angle (rad for computation, deg for display)
pN position North (ft)
pE position East (ft)
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h altitude (ft)
δT thrust control (lb)
δe elevator control (rad for computation, deg for display)
δa ailron control (rad for computation, deg for display)
δr rudder control (rad for computation, deg for display)

I. Introduction

In the past two decades, more than half of the fatal airliner aircraft accidents are caused by loss-of-control
(LOC) in flight.1 Aircraft LOC2,3 is an abnormal flight condition that includes stall, unusual attitude,
large pitch and roll motion, and lateral/longitudinal oscillations, etc., which may pose safety threat to
the aircraft if no immediate action is taken to address it. A more detailed definition on aircraft LOC is
discussed in Wilborn and Foster.4 Most in-flight LOC accidents are triggered by precursor events including
subsystem/component failures, external hazards, and human errors. Prevention measures can be employed
to enhance subsystem/component maintenance, to select flight route that avoids hazardous regions, and
to care for the flight crews making sure that human mistakes are minimized. In addition to the above
ongoing prevention effort, a new-generation intelligent flight control system can and should be designed to
automatically neutralize the effect of the LOC precursor events, to prevent the aircraft from entering LOC,
and to perform LOC recovery in case the aircraft is already in an LOC condition.

For the intelligent flight control system mentioned above to become a reality, two thrusts of research
areas are required. They are aircraft flight dynamics and control theory. The flight dynamics and behavior
of the aircraft near or in the LOC regime5 are very different from those inside the normal flight envelope,
and are not well understood. Aircraft LOC recovery is an extremely challenging and formidable task for
the pilots. The reaction time for LOC recovery usually is very limited, and the pilots need to act quickly,
correctly, and avoid deepening the crisis. Under these emergency and critical situations, pilots certainly need
help from the flight computer/control system to provide the sensing information of all relevant parameters,
to detect and accommodate the faults, to warn or disallow human errors, and to perform LOC recovery via
automated controller reconfiguration or adaptation.

In this paper, an F/A-18 12-state full nonlinear flight dynamics model is employed as a test bed to
investigate the flight dynamics and control effects under LOC hazards to gain insights into effective recovery
mechanisms. The reminder of this paper is organized as follows. A quick introduction of the 12-state
untrimmed, nonlinear flight dynamics simulation model and a brief review of the fundamental system theory
relevant to aircraft flight dynamics and control such as equilibrium, trim, stability, linearization, and region
of attraction are given in Section II, the preliminary section. In Section III, three simple control actions were
employed in the study of LOC prevention and recovery. The first one is a simple open-loop fixed manual
control, the second one is an LQR state feedback controller, and the third one is a modified LQR controller
which is able to handle large roll angle excursions. All three control actions are meant to keep the aircraft
at a desired trim or recover the aircraft from an LOC condition to the desired trim. In Section IV, we firstly
will design a nominal controller to perform altitude control via flight path tracking, and then investigate
the issues arising from elevator jam failures and design a single fixed controller to accommodate arbitrary
elevator jam positions. A brief discussion of the investigation results and conclusion will be given in Section
V.

II. Preliminaries

A. Aircraft Flight Dynamics Model

The F/A-18 flight dynamics simulation model employed in the study was originally created by Buttrill et.
al.6 based on the wind tunnel data. The model, originally written in FORTRAN, was later converted into
MATLAB function files by Chakraborty et. al.7,8 This 9-state full nonlinear model was then employed to
derive reduced linear and nonlinear trimmed models for controller design and simulations in their study in
region of attraction (ROA).

For the reason of simplicity and flexibility, we converted the 9-state full nonlinear F/A-18 flight dynamics
model in MATLAB function files into Simulink model files. Three navigation equations associated with the
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three state variables: two for translational position and one for altitude, are added to the model to make
it a 12-state full nonlinear flight dynamics model. This full model is employed in analysis, design, and
simulations throughout all the work presented in the paper.

The 12-state full nonlinear model and the associated state variables and control inputs of the F/A-18
aircraft flight dynamics are described in the following. The model is represented by the state equation,

ẋ(t) = f (x(t), u(t)) (1a)

where the state vector is

x =
[
V β α p q r φ θ ψ pN pE h

]T
(1b)

and the control input is

u =
[
δa δr δe δT

]T
(1c)

The 12 state variables are

V : total speed (ft/s), β: side slip (rad), α: angle of attack (rad),

p: roll rate (rad/s), q: pitch rate (rad/s), r: yaw rate (rad/s),

φ : roll angle (rad), θ: pitch angle (rad), ψ: yaw angle (rad),

pN : position North (ft), pE: position East (ft), h: altitude (ft)

and the 4 control inputs are

δa: aileron (rad), δr: rudder, (rad) δe: elevator (rad), δT : thrust, (lb).

The equations of motion inside the state equation Eq. (1) are given as follows,

V̇ = − 1

m
q̄SCDw + g(cosφ cos θ sinα cosβ + sinφ cos θ sinβ − sin θ cosα cosβ) +

T

m
cosα cosβ (2a)

β̇ = − 1

mV
q̄SCY w + p sinα− r cosα+

g

V
cos θ sinφ cosβ +

sinβ

V

(
g cosα sin θ − g sinα cosφ cos θ +

T

m
cosα

)
(2b)

α̇ = − 1

mV cosβ
Lift+ q − tanβ(p cosα+ r sinα) +

g

V cosβ
(cosφ cos θ cosα+ sinα sin θ)− T sinα

mV cosβ
(2c)

ṗ = ((IzzL+ IxzN − (Ixz(Iyy − Ixx − Izz)p+ (I2
xz

+ Izz(Izz − Iyy))r)q)/(IxxIzz − I2xz)) (2d)

q̇ = ((M + (Izz − Ixx)pr + (r2 − p2)Ixz/Iyy (2e)

ṙ = ((IxzL+ IxxN + (Ixz(Iyy − Ixx − Izz)r + (I2
xz

+ Ixx(Ixx − Iyy))p)q)/(IxxIzz − I2xz)) (2f)

φ̇=p+ (q sin(φ) + r cos(φ)) tan(θ) (2g)

θ̇ = q cos(φ)− r sin(φ) (2h)

ψ̇ = (q sin(φ) + r cos(φ)) sec(θ) (2i)

ṗN = cos(θ) cos(ψ)V cos(β) cos(α) + (sin(φ) sin(θ) cos(ψ)− cos(φ) sin(ψ))V sin(β)

+(cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ))V cos(β) sin(α)
(2j)

ṗE = cos(θ) sin(ψ)V cos(β) cos(α) + (sin(φ) sin(θ) sin(ψ) + cos(φ) cos(ψ))V sin(β)

+(cos(φ) sin(θ) sin(ψ)− sin(φ) cos(ψ))V cos(β) sin(α)
(2k)

ḣ = sin(θ)V cos(β) cos(α)− sin(φ) cos(θ)V sin(β)− cos(φ) cos(θ)V cos(β) sin(α) (2l)

The moment and force equations, the aerodynamic coefficients, and the aircraft physical parameters required
in the above equations of motion can be found in Chakraborty et. al.7,8
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B. Equilibrium, Trim, Linearization, and Region of Attraction

Equilibium, linearization, and region of attraction are common terms in systems theory; however, these
terms may become confusing in aircraft flight dynamics especially when trim9,10 is roughly considered as a
synonym of equilibrium. Strictly speaking, a system is said to be at equilibrium if all its state variables are
constant at steady state. However, four of the twelve state variables in Eq.(1b) are irrelevant to the aircraft
stability analysis and LOC study. These four state variables are the two position variables, pN and pE, the
altitude h, and the yaw angle, ψ. Therefore, the aircraft is said to be at equilibrium if the other eight state
variables in Eq.(1b): the total speed V , side slip β, angle of attack α, roll rate p, pitch rate q, yaw rate r,
roll angle φ , and pitch angle θ, are constant at steady state. An equilibrium can be stable or unstable; for
example, the pendulum system has two equilibrium points: one is stable when the stick is at the straight
downward position, and the other is unstable when the stick is at the straight upward position. A stable
equilibrium means that any perturbed state due to disturbances or other reasons will be brought back to
the equilibrium at steady state if the perturbed state is inside the region of attraction.

Usually an aircraft trim is meant to be a stable and desirable flight condition;9,10 however, in some
distressed situation especially when partial control authority is lost the aircraft has to fly at a desirable
equilibrium that may be inherently unstable. Under the scenario that the elevator control surface is jammed
and only the thrust control is available for longitudinal motion, there might be only one or even no equilibrium
available for level flight to keep the aircraft afloat. If it does, it may be unstable depending on the jammed
position. Unstable equilibrium is not an issue since it can be stabilized via feedback control as long as the
impaired aircraft is still stabilizable.11,12 On the other hand, a stable equilibrium can be undesirable, and
an aircraft flying at or toward an undesired stable equilibrium may cause LOC problems or even crash.

A general practice of control system design is to select a desired equilibrium (trim), and design a linear or
nonlinear controller so that the closed-loop system has desired performance at and around the equilibrium.
Region of attraction (ROA) basically defines the applicable operating range of the system in the state space.
The concept of ROA is important especially in the decision process of determining whether to engage a
feedback controller or not in an LOC situation since an engagement of a control at the time when the state
of the system is outside the ROA can deepen the crisis.

The aircraft flight dynamics model used in the simulations of this paper is untrimmed, nonlinear, and
parameter dependent. Just like any other physical system, aircraft needs to fly at or around one equilibrium
at a time. For each trim of interest, a specific linear or nonlinear controller can be designed to achieve
the desired performance within the operating range (inside the region of attraction). Although a nonlinear
controller may cover a wider operating range than its linear counterpart, a linear controller can cover a
reasonable wide operating range and deliver excellent performance if it is adequately designed. In this paper,
the fundamental linear optimal regulation and tracking control approaches12–15 are employed to demonstrate
the effectiveness of linear state-space controllers on the LOC prevention and recovery.

III. Recovery from an LOC Condition to a Stable Level Flight

As described in Section IIA, the aircraft dynamics is described by a set of first-order differential equations
with 12 state variables and 4 control inputs,

x =
[
V β α p q r φ θ ψ pN pE h

]T
u =

[
δa δr δe δT

]T (3)

Just like the solution of any differential equation, the aircraft behavior represented by the state vector x(t)
is determined by the initial state vector x(0) and the control input vector u(t). The effect of all the previous
disturbances, turbulence, and control actions up to t = 0 is summarized and stored in the initial state vector
that will continue to influence the flight of the aircraft after t = 0. It is still a challenge in finding formal
ways to verify and validate the LOC prevention and recovery capability of an aircraft flight system. One
tentative way of examining the LOC prevention capability is to disturb the state of the system away from
its trim in a simulation (or virtual flight test), and observe if the system is able to converge back to the trim
without entering an LOC. Similar procedure can also be performed to examine the LOC recovery capability
of the system by engaging a recovery controller to rescue a system already in LOC. The testing initial state
vector to be used in the simulations throughout the paper is similar to the one used by Chakraborty et. al.7
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to create an LOC situation. This initial state vector is called Init F and denoted by xF0 , a ferocious initial
state vector, which represents the effect of the previous disturbances or erroneous control actions, is given
by

Init F : xF0 =
[

350ft/s 20◦ 40◦ 10◦/s 0 5◦/s 0◦ 0◦ 0◦ 0ft 0ft 25000ft
]

(4)

Note that the initial state vector xF0 foretells the coming of a very violent flight condition with the information:
side slip 20◦, angle of attack 40◦, roll rate 10◦/s, yaw rate 5◦/s, and a steep descending flight path angle
γ = θ − α = 0◦ − 40◦ = −40◦.

To present the design of the LOC recovery controller and show how the LOC recovery simulations are
conducted, we will start from the simulation schematic diagram shown in Figure 1. The block in the right is
the aircraft flight dynamics model, which is basically the same as described in Section IIA except the inputs
are required to satisfy the constraints specified by the limiters and actuator dynamics shown in Figure 2.
The state vector x of the untrimmed aircraft flight dynamics model is assumed available for feedback, but
it needs to be subtracted by Trimx to become x̄ to serve as the input to the controller. The output of
the controller is ū, which needs to be added by Trimu to make u as the control input to the aircraft flight
dynamics model via the Actuator Dynamics and Limiter block. Trimx and Trimu are the trimmed state
and trimmed control input of the flight dynamics model, respectively. In other words, Trimx and Trimu

together represent the selected operating trim (equilibrium), and the controller is designed specifically with
respect to the trim and the operating range around it. In the x̄-ū coordinates, the origin represents the
operating trim. When (x, u) is at the trim, (x̄, ū) is at the origin.

Figure 1. Schematic diagram for LOC recovery simulations using switching controls

Figure 2. Saturation and rate limits and actuator dynamics constraints

The Selection Switch on the right of the controllers in general can be controlled by an automatic switching
logic or by the pilot based on flight mode changes or special situations. When a control switching is made,
the trim may need to change accordingly. The four controllers shown in Figure 1 are all designed with
respect to the same trim, which is a straight level flight with 10 degree of angle of attack. This particular
trim is called Trim A that can be obtained as follows either by numerical search or simulation:

Trim A :

 xA =
[

435.9ft/s 0◦ 10◦ 0◦/s 0◦/s 0◦/s 0◦ 10◦ ∗◦ ∗ft ∗ft ∗ft
]T

uA =
[

0◦ 0◦ −1.26◦ 5470.5lb
] (5)
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In the rest of this section, we will consider three control actions regarding to the prevention and recovery
of the LOC scenario caused by the ferocious initial state xF0 given in Eq.(4). The first control action under
test will be a fixed manual control at Trim A without the aid of any feedback control. Then a regular LQR
feedback controller designed specifically for Trim A will be used in the second control action. The third one
is a modified LQR controller in which the LQR controller is modified to address the issue caused by large
roll excursions. The discussion of the other two controllers: Tracking controller and Reconfigured controller
will be given in the next section.

A. A Fixed Manual Control at Trim A for LOC Prevention and Recovery

In this simulation, only a fixed manual control uA =
[

0◦ 0◦ −1.26◦ 5470.5lb
]T

is applied to the input

of the flight dynamics model without the aid of any feedback control. Figure 3 records part of the state
response due to the initial state xF0 , in which the left column shows the transient behavior and the right
column clearly exhibits that the steady-state response. It can be seen from the left column of Figure 3 that

Figure 3. The response of the aircraft with fixed manual control at Trim A due to the initial state xF
0

x(0) = xF0 at t = 0, and things happen rather quickly that within 3 seconds the aircraft has rolled to the
left by more than 200◦ and pitched down to 80◦, which certainly is a very difficult loss-of-control situation.
Then the aircraft continued its wide ride: it rolls to about −360◦ position, which completes one full 360◦

roll excursion, and pitches up and down between −80◦ and +60◦ for a long period of time. The speed V
and the altitude h also exhibit the up and down excursions with the same frequency. A few snap shots of
the wide movements are shown in the left column of Figure 4.
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Nevertheless, it does converge although slowly - after 500 seconds the aircraft recovers to a stable straight
level flight with 10◦ angle of attack, which is exactly the Trim A condition as shown in the right column of
Figure 3.

Figure 4. Snapshots of the aircraft flight with fixed manual control (left column) and with LQR feedback
control (right column).

To explain why it can be possible to recover from an LOC to a stable level flight just by using a fixed
open-loop manual control, we will examine the system property at the trim. For the trim of a straight level
flight with 10◦ angle of attack, given in Eq.(5) as Trim A, a linearized state-space model with decoupled
longitudinal and lateral dynamics state equations can be obtained via the standard Jacobian approach as
follows,

˙̄xLg(t) = ALgx̄Lg(t) +BLgūLg(t)

x̄Lg =
[
V̄ ᾱ q̄ θ̄

]T
, ūLg =

[
δ̄e δ̄T

]

ALg =


−0.0239 −28.3172 0 −32.2

−0.0003 −0.3621 1 0

0 −2.2115 −0.2532 0

0 0 1 0

 , BLg =


−3.8114 0.001

−0.0515 0

−2.8791 0

0 0


(6)
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and
˙̄xLa(t) = ALax̄La(t) +BLaūLa(t)

x̄La =
[
β̄ p̄ r̄ φ̄

]T
, uLa =

[
δ̄a δ̄r

]T
ALa =


−0.0347 0.1736 −0.9848 0.0727

−8.543 −0.8883 0.8762 0

0.886 0.0399 −0.1895 0

0 1 0.1763 0

 , BLa =


−0.0149 0.0207

8.3321 0.9541

−0.042 −0.6277

0 0


(7)

It can be found that the eigenvalues associated with the longitudinal dynamics are −0.3094±j1.4799 and
−0.0101± j0.1008, and the eigenvalues for the lateral dynamics are −0.2873± j1.453, -0.4888, and -0.0518.
The trim is stable although the longitudinal dynamics has a very small damping ratio ς = 0.1 and slow
natural frequency ωn = 0.101rad/s. Note that the damping ratio and natural frequency match very well
with the lightly damped and the long oscillation period in the longitudinal responses shown in Figure 3.

The trim is stable, and it appears that the state of the system falls into the region of attraction when
the roll angle position is close to −360◦. Strictly speaking, mathematically the equilibrium with φ at −360◦

is not the original equilibrium at φ=−360◦. However, physically these two angles are at the same angular
position.

B. An LQR Feedback Control at Trim A for LOC Prevention and Recovery

For this simulation, the Controller Selection Switch in Figure 1 is set at the LQR Controller position, and
the structure of the controller is shown in Figure 5, in which the two LQR controllers, FLg and FLa are
specifically designed for the aircraft to operate at and around Trim A.

Figure 5. Structure of the LQR controller designed specifically for Trim A

Based on the longitudinal state equation in Eq.(6), an optimal longitudinal state feedback controller,

ūLg(t) = FLgx̄Lg

FLg =

[
−0.0028 −0.2725 0.1370 0.3315

−0.0326 −0.7685 0.9373 1.4266

]
(8)

is found to minimize the following performance index,

JLg =
∫∞
0

(
xTLg(t)QLgxLg(t) + uTLg(t)RLguLg(t)

)
dt

with QLg = diag{0.01, 1, 1, 1}, RLg = diag{1000, 0.001}
(9)

Similarly, based on the lateral state equation in Eq.(7), an optimal lateral state feedback controller,

ūLa(t) = FLax̄La

FLa =

[
0.8739 −0.8937 −0.3573 −0.3094

−1.8130 −0.7223 2.6598 −0.1995

]
(10)

is found to minimize the following performance index,

JLa =
∫∞
0

(
xTLa(t)QLaxLa(t) + uTLa(t)RLauLa(t)

)
dt

with QLa = diag{10, 100, 10, 10}, RLa = diag{100, 10}
(11)
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Figure 6. The response of the aircraft with LQR feedback control at Trim A due to the initial state xF
0 . Left

column: LQR controller engaged at t = 0, Right column: LQR controller engaged at t = 2.4s.

Figure 7. The control input of the aircraft with LQR feedback control at Trim A due to the initial state xF
0 .

Left column: LQR controller engaged at t = 0, Right column: LQR controller engaged at t = 2.4s.
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The left and right columns of Figure 6 and Figure 7 record the LOC responses of the system with LQR
controllers engaged at t = 0 and t = 2.4s, respectively. When engaged at the very beginning, the controller
is able to keep the roll and pitch angles under control to the desired 0◦ and 10◦, respectively, and bring
the closed-loop system to Trim A in less than 30 second. With a late engagement at t = 2.4s, the LQR
controller is still able to recover the system from an LOC condition with φ = −150◦ and θ = −80◦ to the
Trim A condition, a straight level flight with 10◦ angle of attack. It is clear that the performance of the
LQR feedback control is better than that of the fixed manual control in terms of LOC prevention and LOC
recovery. The comparison is also clearly illustrated in Figure 4 in which the snap shots and flight data of the
LQR feedback control on the right column reveal much better LOC prevention and recovery performance
than those of the fixed manual control on the left column.

The comparison of the two controls can also be interpreted according to pole (eigenvalue) locations. The
switch from the manual control to the LQR feedback control has changed the longitudinal eigenvalues from
−0.3094± j1.4799, −0.0101± j0.1008, which are the eigenvalues of ALg, to −0.3344± j1.4927, −0.1702±
j0.1126, which are the eigenvalues of ALg + BLgFLg. Note that the damping ratio has changed from
ς = 0.1 to ς = 0.85 and the natural frequency from ωn = 0.101rad/s to 0.2rad/s. Meanwhile, the lateral
eigenvalues have changed from −0.2873 ± j1.453, -0.4888, -0.0518, which are the eigenvalues of ALa, to
−0.2873 ± j1.453, −0.4888, −0.0518, which are the eigenvalues of ALa + BLaFLa. Note that the increases
of both damping ratio and natural frequency for both longitudinal and lateral dynamics have enhanced the
stability and increased the rate of convergence to the desired equilibrium.

Figure 8. The response of the aircraft with the LQR feedback control. Left column: LQR controller engaged
at t = 30s, Right column: LQR controller engaged at t = 100s.
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Figure 9. The control input of the aircraft with LQR feedback control. Left column: LQR controller engaged
at t = 30s, Right column: LQR controller engaged at t = 100s.

Figure 10. The response of the aircraft with the LQR feedback control. Left column: LQR controller engaged
at t = 2.5s, Right column: LQR controller engaged at t = 29s.
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Figure 11. The control input of the aircraft with LQR feedback control. Left column: LQR controller engaged
at t = 2.5s, Right column: LQR controller engaged at t = 29s.

The time of switching from the manual control (or a nominal controller) to the LQR control (or an LOC
recovery controller) is critical. A switching made at a wrong time can deepen the LOC situation and make
it even more difficult to recover. For the LOC case with the LQR controller considered in this subsection,
the aircraft is recoverable to Trim A with roll angle φ = 0◦ during the early period from t = 0 to t = 2.4s.
It is also recoverable to Trim A with zero roll angle at a later time after t = 30s as shown in Figure 8
and Figure 9. However, if the LQR controller is engaged during the time between t = 2.5s and t = 29s,
the system will either become unstable or converge to an undesired equilibrium that may lead the aircraft
to crash. As shown in Figure 10 and Figure 11, the LQR controller does not have enough control input
resources to bring the system to the desired trim; instead, the system converges to an undesired equilibrium,
Equilibrium X, as

Equil X :

 xX =
[

463ft/s 10◦ 39◦ −50◦/s −3◦/s −40◦/s −355◦ −51◦ ∗◦ ∗ft ∗ft ∗ft
]T

uX =
[

25◦ −17.8◦ −24◦ 5469.6lb
]

(12)
Note that both of simulation results on the left and right columns in Figure 10 and Figure 11 (the controller
engaged at t = 2.5s or t = 29s) indicate that the aircraft will be attracted to the above undesired equilibrium,
which has a flight path angle γ = −90◦ that would crash the aircraft shortly after t = 60s or t = 80s as
shown in the left and right columns, respectively, of Figure 10.

It is interesting to note that the aircraft is recoverable when the time is either before t = 2.4s or after
t = 30s. A reasonable explanation is that the system is inside the ROA (region of attraction) during these
two time zones. In the early stage, the effect due to the initial state (or disturbances/erroneous control
actions) is still not fully developed. On the other hand, the LOC effect will decay as time goes by if the trim
set by the fixed manual control is stable. With a decrease of the LOC effect, the system may reenter the
ROA so that the controller is able to bring the system to the desired trim.

An analysis of the failed recovery between t = 2.5s and t = 29s and a possible remedy of the failure will
be discussed in the next subsection.

C. A Modified LQR Feedback Control at Trim A for LOC Prevention and Recovery

From the simulations in the previous subsection, Section IIIB, the aircraft will pitch down to about −88◦

and roll to the left to more than 200◦ in less than 3 seconds if the LQR controller is not engaged successfully
within 2.4 seconds. Furthermore, most of the LQR controller action engaged during the period between
t = 2.5s and t = 29s will bring the system to the undesired equilibrium, Equil X, given by Eq.(12). By
observing the control inputs at the equilibrium, the ailron control and elevator control are both at their
saturation limits, δa = 25◦ and δe = −24◦. It appears that the LQR controller attempts to go against
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Figure 12. Structure of the Modified LQR controller designed specifically for Trim A

the tide to bring the roll angle back to φ = 0◦ instead of just letting it roll towards φ = −360◦. Although
physically 0◦ and 360◦ mean exactly the same angular position, the LQR controller considers that the aircraft
is 360◦ out of position if φ = −360◦. The controller needs to recognize that a −300◦ angle actually is an
angle of +60◦, and to bring +60◦ to 0◦ is much easier.

Figure 13. The response of the aircraft with the modified LQR feedback control. Left column: Modified LQR
controller engaged at t = 2.5s, Right column: Modified LQR controller engaged at t = 29s.

To resolve this issue, a simple roll angle adjustment logic is added to the LQR controller to make it
a modified LQR controller as shown in Figure 12. With the modified LQR controller, the LOC condition
caused by the initial state, xF0 given in Eq.(4), can be recovered to Trim A, a straight level flight with
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Figure 14. The control input of the aircraft with LQR feedback control. Left column: Modified LQR controller
engaged at t = 2.5s, Right column: Modified LQR controller engaged at t = 29s.

10◦ angle of attack, despite the controller engagement time. As shown in Figure 13 and Figure 14, any
engagement time between t = 2.5s and t = 29s is now recoverable to Trim A in less than 35 seconds.

IV. Tracking and Reconfigured Control for Elevator Jam Failure

This section will be divided into two subsections, one for altitude control via flight path tracking and
another for the same problem under the elevator jam failure condition. The elevator jam position is assumed
unknown a priori, but its position information will be available for feedback when it occurs. Furthermore
the tracking controller will be a fixed controller capable of neutralizing the disturbances created by a range
of elevator jam positions.

Figure 15. Structure of the flight path tracking controller designed specifically for Trim A

A. Altitude Control via Flight Path Tracking

The structure of the flight path tracking controller designed specifically for Trim A is shown in Figure 15.
The matrices FLa and FLg designed in Section III will continue to be used in this subsection. The tracking
regulator matrices WLg and ULg can be obtained as

WLg =
[

435 −0.463913 0 0.536087
]T

ULg =
[

0.356339 16677.9
]T (13)

by solving the following equations,

ALgWLg +BLgULg = 0

C1uWLg +D11uULg = 0
(14)
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with C1u =
[

0 1 0 −1
]

and D11u = 1 chosen for flight path tracking.

Figure 16. The response of the aircraft with altitude control via flight path tracking. Left column: Nominal
altitude control responses - 7000ft ascent (solid line) and 5000ft ascent (dashed line), Right column: Unstable
responses due to the elevator jam at 1.28◦ occurred t = 50s.

The h − γ Converter block is employed to determine the desired flight path angle γ according to the
altitude control differential ∆h and the actual altitude output. With the flight path tracking controller, the
altitude of the aircraft can be smoothly controlled as shown in the left column Figure 16 and Figure 17.
The aircraft is assumed conducting a straight level flight with 10◦ angle of attack (Trim A) initially, and
the 7000ft (or 5000ft) ascent maneuver starts at t = 5s. It can be seen from the graphs on the left column
of Figure 17 and Figure 16 that both the elevator δe and the thrust δT work together to control the flight
path to achieve the desired altitude ascent and resume to the trim at the new altitude. The fixed tracking
controller is capable of handling a range of ascent and descent.

The graphs on the right column of Figure 16 and Figure 17 demonstrate how an elevator jam failure
would affect the stability and performance of the system. Assume the aircraft in the beginning is conducting
the same 7000ft (or 5000ft) accent maneuver using the same tracking controller, but at t = 50s the elevator
is jammed at the 1.28◦ position. The elevator jam failure not only causes a loss of control authority, it also
creates a persistent disturbance against the flight of the aircraft. If no action is taken to address the failure
issue and the nominal tracking controller is still in action, the tracking performance would be poor and the
system might become unstable as indicated by the time response graphs on the right column of Figure 16
and Figure 17.
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Figure 17. The control input of the aircraft with altitude control via flight path tracking. Left column:
Nominal altitude control responses - 7000ft ascent (solid line) and 5000ft ascent (dashed line), Right column:
Unstable responses due to the elevator jam at 1.28◦ occurred t = 50s.

B. Controller Reconfiguration to Accommodate the Elevator Jam Failure

Figure 18. Structure of the reconfigured controller to accommodate the elevator jam failure

The structure of the reconfigured flight path tracking controller designed to accommodate the elevator
jam failure is shown in Figure 18. The lateral LQR controller FLa will remain the same, but the longitudinal
controller is required to be designed to address the elevator jam and flight path tracking according to the
new longitudinal state equation,

˙̄xLg(t) = ALgx̄Lg(t) +Bj δ̄T (t) +
[
Be 0

] [
δ̄e

γ̄ref

]
(15)

where
[
Be Bj

]
= BLg and δ̄e becomes a persistent disturbance, not a control input anymore. Fj is

designed as

Fj =
[
−81.2 4345.6 1417.4 −3345

]
(16)

via the optimal solution that minimizes the following performance index,

Jj =
∫∞
0

(
xTLg(t)QjxLg(t) + δTT (t)RjδT (t)

)
dt

with Qj = diag{1, 1, 1, 1}, Rj = 0.0001
(17)

With the above Fj , the longitudinal closed-loop poles will be at −0.3095± j1.4799, −0.0496± j0.0887.
The tracking regulator matrices Wj and Uj can be obtained as

Wj =


1328.6 −38.4324

−1.30189 0

0 0

−1.30189 1

 , Uj =
[
−45412.5 32860.2

]
(18)
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Figure 19. The response of the aircraft with reconfigured control to accommodate elevator jam failure. Left
column: Elevator jammed at 1.28◦ position - 7000ft ascent (solid line) and 5000ft ascent (dashed line), Right
column: Elevator jammed at −2.54◦ position - 7000ft ascent (solid line) and 5000ft ascent (dashed line).

Figure 20. The control input of the aircraft with reconfigured control to accommodate elevator jam failure.
Left column: Elevator jammed at 1.28◦ position - 7000ft ascent (solid line) and 5000ft ascent (dashed line),
Right column: Elevator jammed at −2.54◦ position - 7000ft ascent (solid line) and 5000ft ascent (dashed line).
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by solving the following equations,

ALgWj +
[
Be 0

]
+BjUj = 0

C1ujWj +
[

0 D11uj

]
= 0

(19)

with C1uj =
[

0 1 0 −1
]

and D11uj = 1 chosen for flight path tracking.

The same fixed reconfigured controller designed above is employed in two simulations: one with elevator
jammed at 1.28◦ position, and the other one jammed at −2.54◦. Part of the state responses and the thrust
control action are shown in Figure 19 and Figure 20, in which the left column is for the case with elevator
jammed at 1.28◦ and the right column is for the other case with elevator jammed at −2.54◦.

It can be seen that the same fixed reconfigured controller is able to accommodate the elevator jammed
at different positions and achieve flight path tracking and altitude ascent or descent by using the single
remaining thrust control. It is interesting to observe that both cases reach straight level flight equilibriums
at steady state but with different angles of attack, different velocities, and different amount of thrust control.

For the case with elevator jammed at −2.54◦, the aircraft reaches the following equilibrium, Equil J1:

Equil J1 :

 xJ1 =
[

410ft/s 0◦ 11.6◦ 0◦/s 0◦/s 0◦/s 0◦ 11.6◦ ∗◦ ∗ft ∗ft ∗ft
]T

uJ1 =
[

0◦ 0◦ −2.54◦ 6447.9lb
] (20)

For the case with elevator jammed at 1.28◦, the aircraft reaches the following equilibrium, Equil J2:

Equil J2 :

 xJ2 =
[

520ft/s 0◦ 6.5◦ 0◦/s 0◦/s 0◦/s 0◦ 6.5◦ ∗◦ ∗ft ∗ft ∗ft
]T

uJ2 =
[

0◦ 0◦ 1.28◦ 3336.1lb
] (21)

V. Conclusion

In this study, we have demonstrated that a state-space linear feedback controller designed based on the
modified LQR and multivariable regulator/servomechanism theory can be extremely effective in preventing
aircraft from getting into an loss-of-control (LOC) situation. The same controller also exhibits impressive
capability in rescuing aircraft from LOC back to a safe flight. We also demonstrated that the engagement
of a recovery feedback control could deepen the LOC crisis if the controller is not properly designed, the
engaging time is wrong, or the actuating resources are not adequate. The nonlinearity and time delay due to
the actuator saturation and rate limit actually cause more issues than the nonlinearity of the aircraft flight
dynamics. The actuator saturation can send the aircraft to an undesired equilibrium like the Equil X in
Section IIIC that would lead to a crash. Another main contribution of the paper is the proposed reconfigured
controller design to address the elevator jam issue. The designed single fixed regulator/controller is able to
accommodate a range of elevator jam positions and achieve flight path tracking and altitude control. The
amazing property of the regulator/controller is that it allows the closed-loop system to optimally choose a
desired equilibrium to fly according to the elevator jam position and the flight path command.
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